
Finite-bandwidth effects on the causal prediction of ultrasonic
attenuation of the power-law form

Joel Mobley
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6101

Kendall R. Waters and James G. Miller a)

Laboratory for Ultrasonics, Washington University in St. Louis, St. Louis, Missouri 63130

~Received 16 August 2002; revised 13 August 2003; accepted 2 September 2003!

Kramers–Kronig~K–K! relations exist as a consequence of causality, placing nonlocal constraints
on the relationship between dispersion and absorption. The finite-bandwidth method of applying
these relations is examined where the K–K integrals are restricted to the spectrum of the
experimental data. These finite-bandwidth K–K relations are known to work with resonant-type data
and here are applied to dispersion data consistent with a power-law attenuation coefficient~exponent
from 1 to 2!. Bandwidth-restricted forms of the zero and once-subtracted K–K relations are used to
determine the attenuation coefficient from phase velocity. Analytically, it is shown that these
transforms produce the proper power-law form of the attenuation coefficient as a stand-alone term
summed with artifacts that are dependent on the integration limits. Calculations are performed to
demonstrate how these finite-bandwidth artifacts affect the K–K predictions under a variety of
conditions. The predictions are studied in a local context as a function of subtraction frequency,
bandwidth, and power-law exponent. The K–K predictions of the power-law exponent within
various decades of the spectrum are also examined. In general, the agreement between
finite-bandwidth K–K predictions and exact values grows as the power-law exponent approaches 1
and with increasing bandwidth. ©2003 Acoustical Society of America.
@DOI: 10.1121/1.1621394#
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I. INTRODUCTION

Fundamentally rooted in causality, Kramers–Kron
~K–K! relations have proven to be powerful, practical too
with applications across many disciplines of physics. In
trasonics, subtracted forms of the K–K relations have b
used to accurately predict dispersion and attenuation in
tems exhibiting resonant behavior ~encapsulated
microbubbles1! and power-law growth2 in attenuation. The
principal difficulty in applying K–K relations directly to ul-
trasonic data is the finite bandwidth inherent in experim
tally measured spectra. By restricting the range of integra
to the measurement spectrum, artifacts are introduced
can seriously impact the accuracy of K–K transformations
is still an open question as to whether an accurate gen
procedure exists for applying K–K relations directly~i.e.,
blindly! to any type of dispersion/attenuation data, or if so
information ~e.g., an analytical model! about the target sys
tem beyond the bandlimited attenuation and dispersion
is required to overcome the artifacts.

Previously, we examined the finite-bandwidth K–
problem for resonant systems using experimental data f
Albunex® microbubble suspensions. Within the measurem
spectrum, which covered more than a decade in freque
these data exhibited a single, well-resolved resonance w
full-width at half maximum covering about one quarter
the total bandwidth. For such a system, we found that ac
rate K–K inversions were possible using only the measu

a!Electronic mail: james.g.miller@wustl.edu
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dispersion and attenuation data~i.e., no out-of-band extrapo
lations or model fitting were required!. In contrast, this work
focuses on the systems that exhibit monotonic dispersion
attenuation, specifically those whose attenuation coeffic
can be described by a power law. The power-law form of
attenuation coefficient is consistent with the behavior o
considerable number of solids,3 liquids,2,3 and biological
tissues4,5 in the MHz range, and is thus of interest in ultr
sonic research. An accurate model-dependent procedure
applying K–K transformations specifically to power-law sy
tems has been demonstrated previously.2 In that study, the
data were fit to the power-law model, and the predictions
expressed as functions of the fitting parameters. These
pressions for velocity and attenuation are derived by ass
ing the model used to fit the data can be extrapolated to
entire spectrum, fromv50 to v→`. The present study is
distinguished from this earlier work because here we ass
that the model holds only within the bandwidth of intere
and we examine the impact this spectrally limited knowled
imposes on K–K predictions. This paper is specifically co
cerned with calculating the attenuation coefficient w
finite-bandwidth K–K using the causally consistent form
the phase velocity as the input.

There are two aspects of the finite-bandwidth K–
problem that are specifically addressed in this work. The fi
part of the study examines the case where a subtraction
quencyv0 is chosen at an interior frequency well within th
bandwidth of interest~at least a factor of 2 above the lowe
limit !. This portion of the study is a test of the K–K calcu
lation procedure that was successfully applied to the reso
114(5)/2782/9/$19.00 © 2003 Acoustical Society of America
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microbubble data,1 where certain choices ofv0 across the
spectrum optimized the accuracy of the predictions. This p
also has implications for composite media that have b
resonant and power-law features~e.g., particles suspended
an oil!. The second part of the study is concerned with p
dicting the power-law exponent of the attenuation coeffici
from the K–K transformation of bandlimited dispersion da
In this case, both the subtraction frequency and lower li
of integration are taken to be zero. The power-law traject
of the K–K predicted attenuation coefficient is examined
individual decades of frequency~i.e., powers of 10! below
and up to the upper limit of integration.

In Sec. II, we provide some background on the trans
characteristics of media with a power-law attenuation co
ficient and the causally consistent form for the phase ve
ity. The finite-bandwidth forms of the subtracted Kramer
Kronig relations are also introduced. In Sec. III analytic
expressions for the finite-bandwidth K–K predictions of t
attenuation coefficient are given. These results are the su
two terms, the first being the proper power-law result and
second encompassing the finite-bandwidth artifact. In S
IV, the analytical results from Sec. III are used to calcul
attenuation coefficient curves under various circumstan
The discussions of these results are woven through
Sec. IV.

II. BACKGROUND

A. Ultrasonic attenuation and dispersion in power-law
systems

The linear transport of ultrasonic waves across an
tropic medium of thicknessD is accounted for in general b
a Fourier-domain transfer function of the form

H~v,D !5exp@ iK ~v!D#, ~1!

whereK(v)5@v/c(v)#1 ia(v) is the complex wave num
ber,a~v! is the attenuation coefficient, andc(v) is the phase
velocity. Experimentally, a power-law form of the attenu
tion coefficient

a~v!5a0v11« where 0<«<1, ~2!

has been found to provide an accurate fit to broadband
from a variety of solid and liquid materials within the respe
tive measurement bandwidths. When Eq.~2! holds for the
entire frequency spectrum, the phase velocity takes the c
ally consistent form2,3

1

c~v!
2

1

c~v0!
5a0 tanF ~11«!

p

2 G~v«2v0
«! 0,«<1

~3a!

and

52a0

2

p
ln

v

v0
«50. ~3b!

@Equation~3b! can be obtained by taking the«→0 limit of
Eq. ~3a!.# This form of the dispersion as well as the cons
tency of Eq.~2! and Eq.~3! have also been verified in th
laboratory.2,3 @Both a~v! and c(v) are even functions, a
property derived from the fact thatH(v,D) is the Fourier
J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
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transform of a real function. Since negative frequencies
not explicitly considered, no absolute value signs are use#

B. Kramers–Kronig relations for ultrasonic
attenuation and phase velocity

Given that the medium described byH(v,D) satisfies
the physical requirements of causality and finite energy,
real and imaginary parts ofH(v,D) can be shown to form a
Hilbert transform pair via Titchmarsh’s theorem. The integ
tion over negative frequencies can be mapped to the pos
axis, and the resulting expressions are commonly known
Kramers–Kronig relations. The complex wave number its
derives its analytic properties from the transfer function, a
under the proper conditions the complex wave number w
retain the domain of analyticity required of Hilbert transfor
pairs. However, it will not fulfill the square integrability re
quirements since the attenuation coefficient must diverge
v→` to insure the square integrability ofH(v,D). In spite
of this, K–K relations betweena~v! and c(v) can be de-
rived by the method of subtractions,6 which insures conver-
gence of the integrals. Formed usingg(v)5 iK (v) as the
basis function, the unsubtracted and once-subtracted
tions are considered here. To allow for the straightforwa
adaptation to the restricted interval case, the relations
given in their expanded form.1 The unsubtracted~zeroth! re-
lation for the attenuation coefficient is

a~v!5 lim
V→`
s→0

F 2
1

p E
s

V

v8

c~v8!
2

v

c~v!

v82v
dv8

2
1

p E
s

V

v8

c~v8!
1

v

c~v!

v81v
dv8G . ~4!

Combining the two integrands into a single rational expr
sion and counting the powers ofv8, one can see that conve
gence requires that«,21 @wherev8/c(v8);v811«]. This
is, of course, inadequate for the range of power laws con
ered here, and higher-order subtractions must be conside
The once-subtracted relation in the expanded form is

a~v!5a~v0!1 lim
V→`
s→0

F 2
1

p E
s

V

v8

c~v8!
2

v

c~v!

v82v
dv8

2
1

p E
s

V

v8

c~v8!
1

v

c~v!

v81v
dv8

1
1

p E
s

V

v8

c~v8!
2

v0

c~v0!

v82v0
dv8

1
1

p E
s

V

v8

c~v8!
1

v0

c~v0!

v81v0
dv8G , ~5!
2783Mobley et al.: Causal prediction of power-law attenuation
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where v0 is referred to as the subtraction frequency.
counting the powers ofv8 after combining all four inte-
grands, one can expect convergence for«,1 which covers
the range of power laws examined in this work. Note that
«51, there is no dispersion so this case is naturally exclud
We will refer to these K–K expressions whose integr
cover the entire positive frequency axis@i.e., ~s,V!→~0,̀ !#
as ‘‘unrestricted.’’

The interval-restricted~i.e., finite-bandwidth! relations
are given by

a~v!~s,V,n50!52
1

p E
s

V

v8

c~v8!
2

v

c~v!

v82v
dv8

2
1

p E
s

V

v8

c~v8!
1

v

c~v!

v81v
dv8, ~6!

and

a~v!~s,V,n51!5a~v0!2
1

p E
s

V

v8

c~v8!
2

v

c~v!

v82v
dv8

2
1

p E
s

V

v8

c~v8!
1

v

c~v!

v81v
dv8

1
1

p E
s

V

v8

c~v8!
2

v0

c~v0!

v82v0
dv8

1
1

p E
s

V

v8

c~v8!
1

v0

c~v0!

v81v0
dv8, ~7!

wheren is the subtraction order and the limits of integrati
are such that 0<s,V.

III. THEORY

The results shown in this section are calculated by s
stituting the dispersion as given in Eq.~3a! and Eq.~3b! into
the restricted interval forms, Eq.~6! and Eq.~7!. The forms
of the restricted K–K results depend on whether or not
evaluation frequency,v, and the subtraction frequency,v0 ,
are contained within the integration interval. The viewpo
taken in this work is that the bandwidth of integration d
notes the extent of our knowledge about the complex w
number, and thus we examine only the situation wheres,v,
v0,V. In all cases considered, 0<«,1. From the unsub-
tracted relation@Eq. ~6!#

a~v!~s,V,0!5a0v11«1F0
~v!~s,V!, ~8!

whereF0
(v)(s,V) represents the artifactual terms that expl

itly depend on the limits of integration
2784 J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
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F0
~v!~s,V!52

2

p

V2s

c~v!
2

a0

p
tanF ~11«!

p

2 G
3S 2s11« (

n50

`
1

2n1«13

s2n12

v2n12

22V11« (
n50

`
1

2n2«21

v2n

V2n

22~V2s!v«2v11« ln
v1s

v2s

V2v

V1v D ~9a!

52
2

p

V2s

c~0!
2

a0

p
tanF ~11«!

p

2 G
3S 2s11« (

n50

`
1

2n1«13

s2n12

v2n12

22V11« (
n50

`
1

2n2«21

v2n

V2n

2 v11« ln
v1s

v2s

V2v

V1v D . ~9b!

In the limit of «→0 ~logarithmic dispersion!, the remainder
becomes

lim
«→0

F0
~v!~s,V!

52
2

p S V

c~V!
2

s

c~s! D
1

2a0v

p2 S ln
s

v
ln

v1s

v2s
2 ln

V

v
ln

V1v

V2v

22(
n50

`
1

~2n13!2

s2n13

v2n13
2 2(

n50

`
1

~2n21!2

v2n21

V2n21D .

~10!

In the limits s→0 andV@v, this becomes

a~v!~0,V@v,0!

5a0v11«2V11«
2

11«

a0

p
tanF ~11«!

p

2 G 0,«,1

~11a!

5a0v11«2V
2

p S 1

c~V!
1

2a0

p D «50, ~11b!

which diverges asV→` as anticipated.
The relation with one subtraction yields the following

a~v!~s,V,1!5a0v11«2a0v0
11«1a~v0!1F1

~v,v0!
~s,V!

~12a!

5a0v11«1F1
~v,v0!

~s,V!, ~12b!
Mobley et al.: Causal prediction of power-law attenuation
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F1
~v,v0!

~s,V!

52
a0

p
tanF ~11«!

p

2 G
3S 2s11« (

n50

`
s2n12

2n1«13S 1

v2n12
2

1

v0
2n12D

22V11« (
n51

`
1

2n2«21

v2n2v0
2n

V2n

2v11« ln
v1s

v2s

V2v

V1v
1v0

11« ln
v01s

v02s

V2v0

V1v0
D .

~13!

In the limit «→0, the remainder term becomes

lim
«→0

F1
~v,v0!

~s,V!

5
2a0

p2 S v ln
s

v
ln

v1s

v2s
2v0 ln

s

v0
ln

v01s

v02s

2v ln
V

v
ln

V1v

V2v
1v0 ln

V

v0
ln

V1v0

V2v0

22s (
n50

`
s2n12

~2n13!2 S 1

v2n12
2

1

v0
2n12D

22V (
n50

`
1

~2n21!2

v2n2v0
2n

V2n D . ~14!

Taking the limit of largeV and smalls

lim
V@v,v0

a~v!~s,V,1!

5a0v11«1
a0

p
tanF ~11«!

p

2 G 2

12«

v22v0
2

V12«
0,«,1

~15a!

5a0v2
4a0

p2

v22v0
2

V
«50, ~15b!

which converge toa~v! in the limit of V→`. The subtrac-
tion frequency v0 exerts no influence on the shape
a(v)(s,V,1), but only serves to ‘‘anchor’’a(v)(s,V,1) to
a~v! at v5v0 . To confirm these analytical results, the r
stricted bandwidth relation of Eq.~7! was numerically inte-
grated under a variety of conditions using the form of t
dispersion in Eq.~3a!. In all of these comparisons, the an
lytical expression and numerical integrations produced
sentially equivalent outcomes.

Both the zeroth- and first-order calculations produce
sults with the same general structure—the correct power-
form of the attenuation coefficient coexisting with addition
additive terms that depend upon at least one of the limits
J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
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integration. However, in the unsubtracted result the ex
terms grow with increasingV, while the once-subtracted re
sult converges to the correct result asV→`.

IV. RESULTS AND DISCUSSION

A. Locally anchored performance „v0Ð2s…

The unrestricted K–K relations have demonstrated th
utility for power-law systems, since they generate analyti
forms for the attenuation and dispersion@Eq. ~2! and Eq.~3!#
that are consistent with experimental data.2 In this model-
dependent approach the K–K inversion is reduced to
simple act of determininga0 and « through some fitting
procedure. Even though the model-fitting method has so
proven a successful approach for performing K–K transf
mations of power-law systems, there are two principal r
sons for investigating their behavior with the more gene
restricted-bandwidth K–K. First, the restricted K–K meth
has been shown to work for resonant-type data without us
any model-dependent or extrapolated parameters.1 It is then
natural to investigate the method with other types of data
assess its wider applicability. Second, it is possible to hav
system that has a combination of localized resonant st
tures riding on a power-law background. Since many liqu
exhibit power-law attenuation, suspensions of microbubb
or microspheres in such a liquid could display this compos
behavior.

As shown in the previous study of the microbubble sy
tem, the accuracy of the restricted K–K prediction for
isolated resonance comes down to the choice of the sub
tion frequencyv0 . Certain choices ofv0 from within the
data spectrum effectively minimize the finite-bandwidth ar
facts, and the rationale behind these choices was dem
strated using an analytical model.1 For the present power-law
case, the accuracy of the restricted-bandwidth approach
more to do with the bandwidth of the data than the choice
subtraction frequency. The results shown in this section~see
Fig. 1! are meant to examine the restricted K–K approach
a manner consistent with the way they are applied to
resonant data; specifically the subtraction frequency is c
sen from the known bandwidth and is distinct from the ba
edges. Also, the limits of integration include realistic me
surement bandwidths.

In Fig. 1 the restricted K–K predictions, calculated u
ing Eq.~12!, are plotted over a region around the subtract
frequencyv0 for various limits of integration. The region o
the spectrum displayed in the figure~from 0.5v0 to 1.5v0)
shows only a portion of the total spectra used to calculate
four K–K curves. This spectral region displayed in Fig.
encompasses the widths of resonant peaks encountere
data from encapsulated microbubble1 (v res/Dv

half max
full width;1)

and polymer microsphere7 (v res/Dv
half max
full width;10) suspen-

sions. This serves to illustrate the behavior of the predic
curves over those frequency scales encountered in reso
data with resolved peaks. In panel~a!, the 11«51.1 results
are plotted. For the curve calculated using the widest ba
width ~with lower limit of integrations50.05v0 , and upper
limit of integrationV550v0), the K–K prediction accounts
for 89% of the variation in the exact curve. If the lower lim
2785Mobley et al.: Causal prediction of power-law attenuation
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of integration is moved up to the boundary of the plott
curves (s50.5v0) while holding the upper limit fixed, the
predicted variation falls to 75% of the target value. The p
dicted variation decreases further as the upper limit is lo
ered, down to 26% of the exact value for the narrowest ba
width case,s50.5v0 to V52v0 . In panel ~b!, the 11«
51.9 results are shown. Here, the predictions are relativ
insensitive to changes ins, so the only changes from curv
to curve are inV. In this case the predicted variations in th
attenuation coefficient range from 41% down to 5% of t
exact value. The impact of these results on predicting pe
and trends ultimately depends on many system-depen
factors ~e.g., relative peak-to-background ratio!. When the
peak is localized above~below! the subtraction frequency
the peak-to-background ratio will be over~under! estimated.
If the resonant peaks are clearly resolved, when the pea
nearv0 it can be reproduced without significant distortio
especially for the smaller values of«. In fact, the restricted
K–K transform is like a ‘‘local filter’’ in this case, suppress
ing the monotonic global trend in favor of the localize
variations.

B. Predicted power-law trajectories, v0 , s\0

In this section, we apply the restricted K–K relations
a manner suited to predicting power-law exponents for
attenuation coefficient. For this purpose, the spectrum wil
examined in specific decades~i.e., powers of 10! down from
the upper limit of integration. In each decade, a power law
fit to the predicted curve to estimate the exponent for

FIG. 1. ~a! The comparison ofa(v)(s,V,1) anda~v! for 11«51.1 around
the subtraction frequencyv0 for bandwidths indicated in the legends.~b!
Comparison ofa(v)(s,V,1) anda~v! for 11«51.9.
2786 J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003
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curve. The subtraction frequency and lower limit of integr
tion are taken to be equal and arbitrarily close to zero so
all terms containings and v0 as factors vanish. The once
subtracted results fora(v)(s,V,1), expressed in Eq.~12!, are
calculated for four power laws, 11«51.9, 1.5, 1.1, and 1.0
~logarithmic dispersion!. The objective is to identify the re
gions of the spectrum in which there is agreement betw
the predicted and exact power-law exponents. In all of
results to follow~shown in Figs. 2–5!, the power-law fits to
a(v)(s,V,1) have anR2 value>0.99.

The results of the 11«51.0 case, where the dispersion
logarithmic, are shown in Fig. 2. In panel~a!, a(v)(s,V,1)

and a~v! are compared on a log–log plot covering thr
decades in frequency up to the upper limit of integrationV.
One can see that the prediction tracks the exact trajec
well for v/V,0.05. In panel~b!, a(v)(s,V,1) and a~v! are
compared on a linear–linear plot over the range 0.001,v/
V<0.01, two decades down from the upper limit. A powe
law fit to a(v)(s,V,1) for just this decade yields 11«50.99.
In panel~c!, a(v)(s,V,1) anda~v! are compared over the to
decade, 0.1,v/V<1, where a power-law fit toa(v)(s,V,1)

yields 11«50.77. Thus, to match the proper power-law tr
jectory with restricted K–K to about 1% in this case requir
knowledge of the dispersion about 1.5 orders of magnitu
above the frequency scale of interest.

The five panels of Fig. 3 display the results for the 11«
51.1 case. In this figure~and the ones to follow! in addition
to a(v)(s,V,1) and a~v!, we also plot the dominant artifac
tual terms from Eq.~12!. For the cases examined here whe
v0 and s are arbitrarily small, the artifact is due to tw
terms—referred to as the ‘‘V series’’

a0

p
tanF ~11«!

p

2 G2V11« (
n51

`
1

2n2«21

v2n

V2n
, ~16!

and the ‘‘log term’’

a0

p
tanF ~11«!

p

2 Gv11« ln
12v/V

11v/V
. ~17!

In panel~a!, the quantitiesa(v)(s,V,1) anda~v! are shown
on a log–log plot covering three decades of the spectrum
to V. Moving down the frequency scale, the two curv
merge in the middle decade similar to the previous case
panel~b!, a(v)(s,V,1) anda~v! are compared on a linear plo
over the third decade down fromV. Here, the fit to
a(v)(s,V,1) yields an exponent of 11«51.09, demonstrating
the high degree of agreement at this scale. In panel~c!, the
two quantities comprising the error are plotted over the sa
decade as panel~b!. The two terms act in opposition to on
another, with theV series having the greater magnitud
Note that the scale of they axis in panel~c! is an order of
magnitude smaller than that of panel~b!. In panel ~d!, the
exact and predicted K–K results are plotted for the top
cade, and the deviation between the two is clear. A pow
law fit over this decade produces 11«50.86. This is 78% of
the target value, very similar to the previous case in the
decade. In panel~e! the error terms are shown to have simil
shapes and are largely counterbalancing one another.
Mobley et al.: Causal prediction of power-law attenuation
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note that the two error terms are individually much larg
than a(v)(s,V,1) and a~v!, as the vertical axis is about 2
times broader than in panel~d!. Both error terms individually
diverge in thev→V limit, but one can show that togethe
these divergences cancel.

Figure 4 contains the results for the 11«51.5 case. In
panel~a!, the quantitiesa(v)(s,V,1) anda~v! are shown on a
log–log plot covering three decades of the spectrum. T
K–K prediction deviates noticeably froma~v! in the second
decade and higher. In panel~b! a(v)(s,V,1) and a~v! are
compared linearly in the 0.001,v/V<0.01 decade. Here, th
correspondence is very good with a power-law fit of 11«
51.46. As shown in panel~c!, theV series term is about a
order of magnitude larger than the logarithmic term, but

FIG. 2. ~a! Log–log plot of the exact and restricted-interval once-subtrac
K–K prediction for attenuation coefficient for 11«51.0, the logarithmic
dispersion case, covering three decades in frequency.~b! A linear plot of the
exact and predicted attenuation coefficients for the third decade, 0.001,v/
V<0.01. ~c! A linear plot of the exact and predicted attenuation coeffici
over the top decade~v/V,1.0!.
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r

e

s

itself about an order of magnitude smaller thana~v!. In
panel ~d! a(v)(s,V,1) and a~v! are compared on a linea
scale over the top decade. Similar to the two previous ca
the predicted exponent of 11«51.13 in this top decade is
only about 75% of the target value. Panel~e! shows the two
artifactual terms ina(v)(s,V,1). The two terms have simila
shapes although they differ in sign, and theV series clearly
has the greater magnitude of the two. Note that they axis in
panel~e! is about a factor of 5 broader than that for panel~d!.

The five panels of Fig. 5 display the results for the 11«
51.9 case. In panel~a!, the quantitiesa(v)(s,V,1) anda~v!
are shown on a log–log plot covering six decades of
spectrum up toV. The K–K prediction deviates froma~v!
increasingly from the smallest decade up toV. Panel ~b!
showsa(v)(s,V,1) anda~v! two decades down from the top
Here, the correspondence is not as strong as in the prev
three cases, but the fit exponent of 11«51.77 for this decade
accounts for 93% of the target value. For the artifact com
nents shown in panel~c!, it is clear that theV-series term is
dominant, with no significant contribution from the log term
In panel~d! a(v)(s,V,1) anda~v! are compared over the to
decade. Here, the difference is dramatic, although the fit
ponent of 11«51.41 is 74% of the target value, a simila
percentage as in the other power-law cases in the top dec

d

t

FIG. 3. ~a! Log–log plot of the exact and restricted-interval once-subtrac
K–K prediction for attenuation coefficient for 11«51.1. The plot covers
three decades in frequency.~b! A linear plot of the exact and predicted
attenuation coefficients over the third decade, 0.001,v/V<0.01. ~c! The
two error terms, theV series@Eq. ~16!# and the log term@Eq. ~17!#, in the
K–K calculations for the third decade. The vertical scale is an order
magnitude narrower than that in panel~b!. ~d! A linear plot of the exact and
predicted attenuation coefficient over the top decade~v/V,1.0!. ~e! The
two error terms in the K–K calculations for the top decade. Here, the
tical axis is 20 times broader than that of panel~d!.
2787Mobley et al.: Causal prediction of power-law attenuation
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FIG. 4. ~a! Log–log plot of the exact and restricted-interval once-subtrac
K–K prediction for attenuation coefficient for 11«51.5. The plot covers
three decades in frequency.~b! A linear plot of the exact and predicte
attenuation coefficients in the third decade, 0.001,v/V<0.01. ~c! The two
error terms, theV series@Eq. ~16!# and the log term@Eq. ~17!#, in the K–K
calculations for the third decade. The vertical scale is an order of magni
smaller than that in panel~b!. ~d! A linear plot of the exact and predicte
attenuation coefficient over the top decade~v/V,1.0!. ~e! The two error
terms in the K–K calculations over the top decade. The vertical axis is a
5 times broader than that of panel~d!.
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Panel~e! shows the two artifactual terms ina(v)(s,V,1). In
panel ~e!, the dominance of theV series in the artifact is
clear, although the logarithmic term counterbalances
somewhat.

In each respective decade shown, theV series term is of
a similar magnitude across the three«.0 cases, while the log
term provides less of a counterbalance as« increases. To
illustrate this trend, we add Eq.~16! and Eq.~17! to get the
total artifact, writing the logarithm in Eq.~17! in its power
series form. The first term in the total artifact series is

a0v11«
2

p
tanF ~11«!

p

2 G S 1

12«

V«

v«
21D v

V
. ~18!

~For v,V/2, this first term approximation is accurate to be
ter than 10%.! In the last bracket of Eq.~18!, the first term is
from the V series and the second is from the log ter
The tangent can also be expanded to first order as tan@~11«!
3~p/2!#'~«21!~p/2! ~which is accurate to better than 10%
for «.0.66!

a0v11«
2

p
~«21!

p

2 S 1

12«

V«

v«
21D v

V

52a0v11«S V«

v«
1~«21!D v

V
. ~19!

As shown by the above expression, as« increases towards 1
the log-term contribution goes to zero while the singular
in the first V-series term compensates for the zero in
tangent, resulting in a finite nonvanishing contribution.

The power law predicted by K–K for a given decade c
be calculated using the following formula:

d

de

ut
the
, this
~11«!k
~s,V,1!5 log10Fa~s,V,1!~102k11V,v0!

a~s,V,1!~102kV,v0!
G

511«1 log10F 11
2

p
tanF ~11«!

p

2 G (
n51

` S 10«~k21!

2n2«21
2

1

2n21D10~12k!~2n21!

11
2

p
tanF ~11«!

p

2 G (
n51

` S 10«k

2n2«21
2

1

2n21D102k~2n21! G ~0,«,1! ~20a!

511 log10F 12
4

p2 (
n51

` S 1

2n21
ln 10k211

1

~2n21!2D 10~12k!~2n21!

12
4

p2 (
n51

` S 1

2n21
ln 10k1

1

~2n21!2D 102k~2n21! G ~«50!, ~20b!

wherek is a positive integer,v0!102k, ands!102k V. Once again the logarithms in the artifact have been written in
power series form. The top decade is given byk51 and the lower decades by the higher integers. In the top decade
Mobley et al.: Causal prediction of power-law attenuation
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formula matches the exponents numerically fit to the predicted curves to 2% and in the lower decades it matches be
0.8%. Below the first decade~i.e., k>2), the above formula is essentially determined by the first terms in the infinite s

~11«!k>2
~s,V,1!511«1 log10F 11

2

p
tanS ~11«!

p

2 D S 10«~k21!

12«
21D10~12k!

11
2

p
tanS ~11«!

p

2 D S 10«k

12«
21D102k

G ~0,«,1!, ~21a!

511 log10F 12
4

p2
~ ln 10k2111!10~12k!

12
4

p2
~ ln 10k11!102k G ~«50!. ~21b!
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As shown in this section, the restricted K–K method
clearly not practical for the prediction of power-law exp
nents in the 1<11«,2 range. Even in the most favorab
case of«50, accurate predictions require the data to spa
spectrum up to 50 times the lowest valid frequency in
measurement. Such wideband data are rarely availabl
acquiring dispersion and/or attenuation data over eve

FIG. 5. ~a! Log–log plot of the exact and restricted-interval once-subtrac
K–K prediction for attenuation coefficient for 11«51.9. The plot covers six
decades in frequency.~b! A linear plot of the exact and predicted attenuati
coefficient for the third decade, 0.001,v/V<0.01.~c! The two error terms,
theV series@Eq. ~16!# and the log term@Eq. ~17!#, in the K–K calculations
for the third decade. The vertical scale is of the same order of magnitud
in panel~b!. ~d! A linear plot of the exact and predicted attenuation coe
cients for the top decade,v/V,1.0. ~e! The dominant error terms in the
K–K calculations for the top decade. The vertical scale is of the same o
of magnitude as in panel~d!.
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a
e
as
a

single decade in frequency is a challenging task~at least with
a single set of transducers, pulsers, and amplifiers!. For ex-
ample, if one were interested in the attenuation behav
around 2 MHz, dispersion data would be required up to
least 100 MHz to achieve reasonable accuracy. The d
would also need to extend down a decade or so belo
MHz. A direct fit of the data to the power law model of E
~2! and Eq.~3! is probably the best approach as the mod
independent method is so spectrally demanding.

One use of these results could be in extrapolating
range of knowledge of a system beyond the finite spec
window of our measurement system. It is possible that
power-law behavior only persists over a limited spectru
and the system exhibits some other type of behavior e
where. The restricted K–K integrals could be interpreted
representing the power-law portion of the system’s behav
A successful fit of the data to the causal model within t
measurement bandwidth could then indicate that the dis
sion follows the model for several decades beyond the h
end of the data; otherwise, the fit to the attenuation d
would exhibit some deviation. The quantitative implicatio
of this idea remain to be explored.

C. On predicting dispersion from the attenuation
coefficient

As shown above, in predicting the attenuation coe
cient the restricted K–K relations produce the correct pow
law form for both zeroth- and first subtraction orders. Ev
though the zeroth-order result does not converge in
V→` limit, as the bandwidth increases the slope of the p
dicted attenuation does approach the correct value. W
predicting the dispersion from power-law attenuation for t
various orders of restricted K–K, the results are more co
plex in both form and interpretation. The dispersion pred
tion problem differs from the attenuation case in two impo
tant respects:~1! the lowest order convergent relation is th
twice-subtracted form, and~2! the lower-order nonconver
gent results do not produces- andV-independent terms tha
correspond to the correct functional form of the dispersi
The wider implications of the dispersion results within t

d
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context of the search for a more generally applicable K
method are yet to be explored.

V. CONCLUSION

In this work, we have demonstrated the impact of ba
width restriction on the causal prediction of the attenuat
coefficient from dispersion for power-law systems. The c
culations using both the zeroth- and first-order subtrac
K–K relations generate analytical results as sums of
terms. The first term is the proper power-law form for t
attenuation coefficient, while the second consists of all
artifactual factors which have explicit dependencies on
limits of integration. We have shown that the once-subtrac
relation converges toa~v! as the bandwidth grows to encom
pass larger portions of the frequency axis while the ze
order transform diverges asV→`. As illustrated in the nu-
merical studies, the restricted K–K predictions grow mo
accurate as 11«→1. The predictions are also better when t
frequency scale of interest is farther removed from the up
limit of integration. The bandwidth-restricted K–K relation
reveal the causal linkage between power-law attenuation
dispersion in the analytical results. In the direct applicat
to experimental data the link may be somewhat obscure
the finite-bandwidth artifacts can be substantial. Howev
with the analytical expressions available in this paper it
possible to conceive of methods for correcting these res
perhaps within the context of a general model-independ
approach to finite-bandwidth K–K calculations.
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